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ABSTRACT

Adaptive observation strategies in numerical weather prediction aim to improve forecasts by exploiting ad-
ditional observations at locations that are themselves optimized with respect to the current state of the atmosphere.
The role played by an inexact estimate of the current state of the atmosphere (i.e., error in the ‘‘analysis’’) in
restricting adaptive observation strategies is investigated; necessary conditions valid across a broad class of
modeling strategies are identified for strategies based on linearized model dynamics to be productive. It is
demonstrated that the assimilation scheme, or more precisely, the magnitude of the analysis error is crucial in
limiting the applicability of dynamically based strategies. In short, strategies based on linearized dynamics
require that analysis error is sufficiently small so that the model linearization about the analysis is relevant to
linearized dynamics of the full system about the true system state. Inasmuch as the analysis error depends on
the assimilation scheme, the level of observational error, the spatial distribution of observations, and model
imperfection, so too will the preferred adaptive observation strategy. For analysis errors of sufficiently small
magnitude, dynamically based selection schemes will outperform those based only upon uncertainty estimates;
it is in this limit that singular vector-based adaptive observation strategies will be productive. A test to evaluate
the relevance of this limit is demonstrated.

1. Introduction

Just as the predictability of the atmosphere changes
from day to day, so does the location at which an ad-
ditional observation would most improve the forecasts
of the day. The use of supplementary observations in
numerical weather prediction (NWP) was first suggested
by Emanuel et al. (1995), and has recently been con-
sidered by a number of authors [Langland and Rohaly
(1996); Joly et al. (1997); Hansen (1998); Lorenz and
Emanuel (1998); Palmer et al. (1998); Berliner et al.
(1999); Bishop and Toth (1999); Joly et al. (1999, man-
uscript submitted to Quart. J. Roy. Meteor. Soc.)] who
contrast a range of adaptive observation strategies
(AOS) each attempting to determine the best location
to observe. In general, the accuracy of forecasts for
spatially extended nonlinear systems will vary with the
quality of the model(s) employed, the uncertainty in the
best estimate of the initial condition (hereafter, the anal-
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ysis), and both the spatial distribution of and noise level
in the observations. These basic issues are independent
of the details of the physical system one is attempting
to predict, suggesting that a general dynamical systems
approach might provide insight for any operational ap-
plication. Just such an approach was taken by Lorenz
and Emanuel (1998, hereafter LE98), employing the 40-
dimensional model introduced by Lorenz (1995). Draw-
ing on results from Hansen (1998), we take a similar
approach in the current paper, first demonstrating the
explicit dependence of adaptive observation strategies
on the data assimilation scheme employed. Second, we
show that taking future dynamical information into ac-
count is beneficial, in contrast with the conclusions in
LE98. General arguments suggest that AOSs based on
singular vectors (see Palmer et al. 1998) will out per-
form other methods in certain limiting cases. Third, tests
of internal consistency (Gilmour and Smith 1997; Gil-
mour 1998) are adopted to determine the relevance of
the linear approximation crucial to the success of sin-
gular vector methods. The results of LE98 are explained
in this context. The arguments of this paper also apply
to cases of structural (as opposed to parametric) model
error and the impact of structural error on adaptive ob-
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FIG. 1. Contours of rms prediction error for different combinations of AOS and assimilation
scheme. (a) No selection using replacement, (b) ROS using replacement, (c) ROS using the EnKF,
(d) ROS using the EnKF with an observational backbone that includes two islands and two lakes
(discussed in section 6). The model components are spaced across the x axis, with components
1–20 over ocean and 21–40 over land. Prediction time increases along the y axis.

3. On the relevance of linearized dynamics

Methods based on linearizations will only be effective
when the linearized dynamics of the model match the
linearized dynamics of the underlying system. While
this fact is widely acknowledged (Vukićević 1991;
Palmer et al. 1994; Buizza and Palmer 1995), consis-
tency is seldom tested for explicitly (exceptions include
Errico et al. 1993; Buizza 1995; Gilmour and Smith
1997; Gilmour 1998). The relevance of a linearity as-
sumption will, of course, depend on the quality of the
model, but also on the quality of the analysis and on
the verification time. Even given a perfect model, the
relevance of each linearization will vary with the state
of the system (it is time dependent), the size of the initial
error and the timescale over which the linearization is
carried out. For a perfect model and infinitesimal errors,
the linearization approximation holds for all time; finite
initial errors almost certainly imply its failure at finite
time. To demonstrate the linearization assumption va-
lidity’s dual dependence on verification time and initial
error magnitude, consider an initial condition of a non-
linear, deterministic system, and imagine isotropic un-
certainty isopleths of increasing magnitude associated
with that initial condition. If the initial condition and
associated uncertainty isopleths are evolved forward un-

der the full nonlinear flow, the initially isotropic un-
certainty isopleths will, after a short time, evolve into
hyper-ellipses, as would be specified by a linear uncer-
tainty propagator. At longer times, one expects a break-
down of the linear approximation first for the isopleths
corresponding to the largest initial uncertainty magni-
tude, but eventually for all isopleths of initially finite
magnitude. For any optimization time there exists an
initial uncertainty magnitude beyond which the linear-
ization assumption fails.

The Q statistic was introduced in order to ascertain
whether or not techniques based on the linear propagator
might be productive in operational NWP forecasts
(Smith and Gilmour 1998; Gilmour 1998). This statistic
is defined by examining the evolution of twin pertur-
bations about a control trajectory. Given a model state,
x(t0), the twin perturbations are defined by adding and
subtracting the same (vector) perturbation d to x(t0).
Thus in addition to the fiducial trajectory from x(t0),
two additional trajectories are defined as x1(t0) 5 x(t0)
1 d1(t0) and x2(t0) 5 x(t0) 1 d2(t0), where d1(t0) 5
2d2(t0). The final time perturbations at t 5 t0 1 t are
then d1(t) 5 F t[x1(t0)] 2 Ft[x(t0)] and d2(t) 5
Ft[x2(t0)] 2 Ft[x(t0)] where
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FIG. 9. Contours of rms prediction error under the EnKF assimilation scheme for (a) the MBAOS
and (b) SVAOS (with the analysis error covariance norm) in the case where the model is struc-
turally imperfect. The MBAOS is less robust than the SVAOS under this level of model error.

FIG. 10. Magnitude of the three-day forecast errors averaged over the ocean for the structurally
imperfect model as a function of expected observational error magnitude (sobs) for the AUAOS,
and SVAOS (the MBAOS is off the scale of the plot). Results for sLE98/4, sLE98/16, and sLE98/64
are shown. Results from three independent experiments are presented for each AOS to illustrate
the variability in the results. For sobs # sLE98/16, the SVAOS and AUAOS produce comparable
results. SVAOS outperform AUAOS for the smallest expected observational uncertainty level,
sLE98/64.

nitude is demonstrated in Fig. 10. Inasmuch as both the
SVAOS and AUAOS significantly outperform the
MBAOS at all observational error magnitudes consid-
ered, only values of ocean-averaged, three-day forecast
errors for the SVAOS and AUAOS as a function of
expected observational error magnitude are shown.
Again four different expected observational uncertain-
ties are considered, sLE98 (beyond the range of the plot),
sLE98/4, sLE98/16, and sLE98/64. Again results from three

independent experiments are shown. For sobs $
sLE98/64, the SVAOS and AUAOS are comparable. It
is only at sobs 5 sLE98/64 that there is a distinction
between the two strategies with the SVAOS producing
smaller forecast errors. The spread among the three re-
alizations for each AOS is larger than for the parametric
model error case (Fig. 8), suggesting that even after 5.5
model years, the results have not fully converged. The
reason for this lack of convergence lies both in the AOS








