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ABSTRACT



1. Introduction23

At the centre of the climate change debate is the question of whether global warming can24

be detected, and if that is the case, whether or not it can be attributed to anthropogenic25

causes. Optimal �ngerprinting is a powerful method of detection and attribution of climate26

change (Hasselmann 1979, 1993; Hegerl et al. 1996) used widely in this area of research. In27

essence, optimal �ngerprinting is a multi-regression analysis that searches for the observed28

temperature record response to external drivers or forcings such as changing levels of green-29

house gases, and aerosol loading (human-induced), volcanic activity and variations in solar30

radiation (naturally induced). A key input in the procedure of �tting this multiple regres-31

sion model is an estimate of the internal variability of the climate system, against which the32

statistical signi�cance of anthropogenic and natural signals must be compared. Hence, an33

accurate depiction of this variability is crucial for the robustness of the results.34

In this work we refer to internal variability as the characterization of the variations in the35

climate system that would occur in the absence of natural or anthropogenic forcings, solely36

due to the coupling of atmosphere, ocean, biosphere and cryosphere dynamics. In most cases37



authors are careful to attempt the inclusion of model uncertainty in the regression model,50

and test the robustness of their results under changes in the amplitude of the estimated51

internal variability, it is not clear whether or not other aspects of the internal variability52





whereT is the global mean temperature andF is the external forcing. In Allen et al.101

(2009), the heat capacityc = 7 :22 W y
m2 � K corresponds to the heat capacity of an ocean mixed102

layer of depthdml = 75m assuming that the ocean covers 70% of the Earth surface. Best es-103

timates for the climate feedback parameter� and e�ective fnhJ/F1ctive75m



data set to test the sensitivity of the results to the addition of the last seven years of obser-126

vations up to 2012 (see section 3). Uncertainties in observed temperatures and estimates of127

forcings are ignored in this paper.128

We additionally use the World Climate Research Programme (WCRP) CMIP3 multi-129

model archive of control simulations to study the internal variability simulated by the state130

of the art climate models (Solomon 2007). For completeness, we have used all the control131

simulations, regardless of drifts. We will comment on the e�ect of drifts in the control132

segments on the �nal results in Section 3.133

(i) Detection and Attribution134

The detection of climate change is the process of demonstrating that climate has changed135

in some well de�ned statistical sense, without providing a reason for that change. Attribution136

of causes of climate change is the process of establishing the most likely causes for the137

detected change with some de�ned level of con�dence (Solomon 2007). In this work we aim138

to detect and attribute climate change by estimating the contribution to the observational139

recordTobs of each of the response temperaturesTi calculated using Eq.(1). In other words,140

we want to obtain the amplitudes�i in the following expression:141

Tobs = T� + u; (2)

whereT is a matrix with n + 1 columns including then forced responsesTi , and a constant142

term to remove the mean. u is an stochastic term that represents the internal climate143

variability with covariance matrix is given by 
 = E(uuy). Under the assumption thatu is144

multivariate normal (Allen and Tett 1999), the optimal scaling factors,� = ( �1; �2; ::�n+1 )145

are given by (Kmenta 1971):146

�̂ =
�
T y
 � 1T

�� 1 T y
 � 1Tobs; (3)

and their variance :147

6



V (�̂) =
�
T y
 � 1T

�� 1 ; (4)

wherey is used to denote the transpose of a matrix.148

In this work, following standard detection and attribution studies, we consider the fol-149

lowing external forcings: greenhouse gases, sulphates, volcanic and solar. It has long been150

recognized however, that the detection and attribution results are sensitive to the omission of151

potentially important forcings and/or internal modes of variability. Likewise, if signals that152



terize the global mean internal variabilityu explicitly as a stationary stochastic process. In173

other words, we formulate the detection and attribution problem as in Eq.(2) but withu a174

function of stochastic parameters that are estimated simultaneously with the scaling factors175

�̂ using a minimum squared error algorithm.176

The �rst challenge is to choose an adequate stochastic representation for the internal vari-177

ability. The di�culties �nding the appropriate stochastic model are due to the uncertainties178

in characterizing internal variability from the observational record, which as discussed be-179

fore, is contaminated by the external forcings and too short relative to the long time scales180

potentially relevant to the current climate variability . In particular, in the observed record181

it is not clear how to separate the decadal from centennial or even longer time scales (Percival182

et al. 2001). Given these uncertainties in the characterization of the internal climate variabil-183

ity we choose to describe it using two models that span a wide range of plausible temporal184

autocorrelations (Vyushin and Kushner 2009). This choice is important to address the fact185



between oceanic and atmospheric dynamics. In this framework, the faster dynamics of the199

atmosphere can be modeled as white noise acting on the slower and damped dynamics of200

the ocean. Thus, the AR(1) is the simplest model that can explain the \weather " and the201

\climate" 
uctuations as two components of the internal variability. Mathematically, the202

AR(1) is a stationary stochastic process that can be written as:203

ut = a1ut � 1 + a0�t (5)

whereE(ut ) = 0 , a1 and a0 are parameters, and�t represents white noise, �.e.E(�t�t0) = �tt 0.204

The autocovariance function of this process is determined bya0 and a1 as follows:205

!AR 1(� ) =
a2

0

1 � a2
1
aj � j

1 (6)

where � is the time lag. Notice that a1 controls the decaying rate of the autocorrelation206

function and in that sense we can associate it to thememory of the system. On the other207

hand a0 is related to the amplitude of the white noise in the system. From Eq.(6) the208

covariance matrix 
 results:209


 AR
i;j =

a2
0

1 � a2
1
aj i � j j

1 (7)

Eq.(5) models the memory of the process such that at a given timet the state of the system210

is a linear function of the previous state (t � 1 ) and some random noise with amplitude211

a2
0 jittering, and hence moving the system away from equilibrium. The autocovariance of212

the process, Eq.(6), decays exponentially with time, so the system has always a much better213

memory of the near past than of the distant past.a1 can take any value in the interval [0;1),214

a1 = 0 represents the limit in which the system is purely white noise, anda1 ! 1 is the215



the parametersa1 and a0 of the climate noise in Eq.(5) following the Hildreth-Lu method221

(Kmenta 1971).222

(iii) Long memory process: FD223

There is empirical evidence that the spectrum of global mean temperature is more com-224

plex than the spectrum of an AR(1) process (e.g. Huybers and Curry (2006)). Di�erent225

power-law behaviors have been identi�ed in globally and hemispherically averaged surface226



ut = (1 � B)� � �t : (8)

where B is the backshift operator, i.e.But = ut � 1 (Beran 1994). The model is fully speci�ed247

by the parameters� and the standard deviation�e of the white noise�t . The autocovariance248

function is given by the equation:249

!F D (� ) =
�2

e sin(��)�(1 � 2�)�( � + �)
��( � + 1 � �)

(9)

As a result the covariance matrix becomes,250


 F D
i;j =

�2
e sin(��)�(1 � 2�)�( ji � jj + �)

��( ji � jj + 1 � �)
: (10)

For large � the autocorrelation function satis�es lim� !1 !F D (� ) = j� j2� � 1 (Beran 1994).251

From this expression one can see that the autocorrelation decays algebraically, thus the252

name "long memory". Since� controls the decaying rate of the autocorrelation function it253

can be associated to thememory of the system, while�e is characterizes the amplitude of254

the white noise.255

Similarly to the AR(1) case, we use this covariance matrix, Eq.(10), and Eq.(2) and Eq.(3)256

to simultaneously determine the scaling factors�i and the parameters� and �e following the257

Hildreth-Lu method (Kmenta 1971).258

3. Results259

a. Robustness of detection statistics260

In order to test the robustness of the detection statistics, we �nd simultaneously the261

scaling factors�i and the stochastic parameters of the internal variabilityu, using generalized262

linear regression to solve Eq.(2). Notice that whenu is modeled as an AR(1) or an FD263

process, the noise covariance matrix 
 in Eq.(3) and Eq.(4) is given by Eq.(7) or Eq.(10)264

respectively. The best estimates of the scaling and noise parameters are chosen as those that265
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minimize the residual white noise inu (Kmenta 1971). Using the Akaike Information Criteria266

we �nd that both models for u are equally skilful at representing the internal variability given267

the observational record used in our analysis.268

Fig.(1) shows the values of the optimal scaling factors with their 95% con�dence intervals269

using the AR(1) (grey line) and the FD (black line) models, whenTobs is the HadCRUT3270

global mean temperature record for the period 1850-2005. In the detection and attribution271

approach, a signal is detected when the corresponding scaling factor is di�erent from 0 with272

95% con�dence, while the attribution of a signal requires con�dence intervals that include273



given value of thez score or, equivalently, the size of the con�dence interval, we aim to �nd293

what is the proportion of cases where the scaling factor� is di�erent from 0. In particular294

the value of thez score that gives � di�erent from 0 in at most 5% of the cases determines295

the 95% con�dence interval. We �nd that for the GHG signal thez score is 2:22 in the case296

of the AR(1) model and 2:45 in the case of the FD model. In addition, and since we expect297

that due to the stochastic nature of the noise models there will be some uncertainty in the298

determination of their parameters, the values of the noise model parameters estimated with299

this Monte Carlo approach provide an estimate of the uncertainty of the best �t noise model300

parameters when regressing the forced responses onTobs in Eq.(2).301

Fig.(1) shows that for our detection model, the greenhouse gas signal is detected and302

attributed, the volcanic signal is only detected, and the solar signal is not detected nor303

attributed for both models of internal variability. In the case of the sulphates forcings, the304

result depends on the representation of the internal variability.305

The robustness of the GHG signal detection can be analyzed using Fig.(2) when the306

internal variability is characterized by the AR(1) model or by the FD model in the upper or307

lower panels respectively. The horizontal and vertical axes show the white noise amplitude308

and memory parameters respectively, and the contour lines indicate the signi�cance level of309

the scaling factor�GHG . The diamond symbol shows the best �t of internal variability (for310

each model) when the observed recordTobs is the HADCRUT3 data for the period 1850-311

2005. The uncertainty in the estimation of the best �t, computed using the Monte Carlo312

approach, is shown as the grey cloud of points. It is clear that even when taking into account313

this uncertainty in the parameters, the signi�cance of the detection of the greenhouse gas314

signal is not a�ected.315

As expected, the signi�cance of the greenhouse gas signal is lower when we represent the316

internal variability as an FD than as an AR(1) process. We �nd that both stochastic models'317

best �t have similar white noise amplitude, showing that statistically they are similarly good318

at explaining variability, given that this is the residual of the linear �t. The bigger di�erence319
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between the two models arises in the memory parameter.320

In the case of the AR(1),a1 is bounded betweena1 = 0 :25 anda1 = 0 :70, and the best321

estimate isa1 = 0 :



the time it takes for the autocorrelation function to reduce to 1=e of its initial value (in347

analogy with the e-folding time for the AR(1) model). For the best �t value of � = 0 :43348

for instance, this calculation gives a much longer time than the length of the observational349

record (156 years). This suggests that, according to this model, in the 156 years long record350

all points are highly correlated. Overall, we �nd that, despite the very di�erent time scales351

that are relevant for the AR(1) and FD characterizations of internal variability, the GHG352

signal detection statistics is robust for both models.353

One interesting question that can be explored using our results is how wrong one would354

have to get the model parameters of the internal variability in order to change the detection355

statement of the greenhouse gas signal. In the case of the AR(1) model we �nd that the356

greenhouse gas signal would become not statistically signi�cant in a world in which higher357

values ofa1 and/or a0 were needed to describe internal variability. In the upper panel of Fig.2358

we see that, to loose statistical signi�cance, one would have to increase the time correlation359

characterized bya1 to more than 0:8 , or triple the white noise parametera0.360

Hence, the detection statistics for the AR(1) model is very sensitive to the memory361

parameter and relatively less sensitive to the amount of white noise in the process. Thus,362

in terms of the global mean temperature internal variability as simulated by GCMs, our363

�ndings suggest that the relevant aspect that should be taken into account in a robustness364

test should be the models' ability to capture correctly the temporal correlations more than365

the total variance, which is in turn conditioned by their ability to capture the most relevant366

dynamical processes, their couplings and feedback mechanisms.367

For the FD process we �nd a di�erent result. In the lower panel of Fig.(2) we can see368

that for the estimated �e there is no � for which the process has a greenhouse gas scaling369

factor which is not statistically signi�cant. Thus, this suggests that the greenhouse gases370

detection results are robust under changes in the memory parameter. In fact, for very high371

values of�





b. CMIP-3 control runs401

In this section we use the same techniques as above to evaluate the control simulations402

used in the detection and attribution of climate change included in the 4th Assessment403

Report of the IPCC. Our goal is to get some insight about the controls' potential limitations404

to estimate internal variability and how this might impact in the robustness of the detection405

and attribution statistics.406

We take annual global mean temperature segments from the CMIP3 control simulations407

that have the same length as the observational record, 156 years, and �t them to an AR(1)408





equivalent to �nding similar covariance matrices; hence this �gure is consistent with our455

previous �ndings about the similarity in magnitude of the autocorrelation functions of the456

�tted internal variability to the 156 years observed record. It is clear that a much longer457

time series is required to appreciate more signi�cant di�erences in the variability simulated458

by the two stochastic models.459

We can also analyze the link between the ability of a GCM to model di�erent modes of460

internal variability and the implications for the signi�cance of detection and attribution. It461

is clear from Fig.(4) that some control segments display peaks corresponding to the ENSO462

signal with unrealistic high amplitudes , as shown by the high power at the 2-5 years fre-463

quency range. However, Fig.(2) shows that most of these control segments fall in the area of464

the plots that correspond to a signi�cant greenhouse gas signal. Consistently wit the �ndings465

in Allen and Tett (1999), this analysis suggests that an accurate depiction of all modes of466

internal variability might not be required to ensure the robustness of the detection statistics467

under our detection model.468

Finally, our analysis point towards the need to develop a wider range of techniques to469

assess the robustness of detection and attribution of climate change. The \consistency test"470

described in Allen and Tett (1999) is equivalent to look at the power spectra of GCMs471

runs and compare their (typically) decadal internal variability with the decadal internal472

variability retained in the residuals of the �t to the observed record. The aim of this test473

is mainly to discard the possibility of over-attributing climate change to the anthropogenic474

signal only because climate models under-represent decadal variability. However, studying475

just the amplitude (or power) of internal variability in Fig.(4) does not give us information476

about all the possible impacts that a model imperfection might have on the detection and477

attribution statistics. Thus, there is a need to develop techniques that provide a way to478

evaluate the impact of speci�c modes of variability and their interactions, and not just their479

amplitude, on the detection and attribution of climate change. Many interesting studies480

have been developed recently (eg. DelSole et al. (2011)) but more work is needed. One481
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models are chosen to span a wide range of plausible temporal autocorrelation structures, and507

include the short-memory �rst-order autoregressive (AR(1)) process and the long-memory508

fractionally di�erencing (FD) process). We �nd that, independently of the representation509

chosen, the greenhouse gas signal remains statistically signi�cant under the detection model510





APPENDIX A541

We use a HadCM3 control simulation of 1000 years to assess how the uncertainty of the542

stochastic parameters depends on the length of the segment, and we refer to this as a �nite543
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List of Tables658

1 Scaling factors� obtained from the linear regression when using HADCRUT4659



AR(1) AR(1) FD FD
1850-2005 1850-2012 1850-2005 1850-2012

VOL 0.46 0.48 0.51 0.53
SOL 2.26 2.03 1.14 0.99
GHG 0.94 0.71 0.91 0.66
SUL 2.47 1.44 2.04 0.93
VOL 0.54 0.52 0.55 0.53
SOL 0.98 1.24 0.58 0.83
ANT 0.76 0.71 0.81 0.73

Table 1. Scaling factors� obtained from the linear regression when using HADCRUT4
observations for two time periods (1850 to 2005 and to 2012), and the forced temperature
responses to VOL,SOL,GHG and SUL forcings , or to VOL, SOL and ANT forcings.

30



CCMA-CGCM3
CCCMA-CGCM3-1-T63

CNRM-CM3
CSIRO-MK3-0
GFDL-CM2-0
GFDL-CM2-1
GISS-AOM
GISS-AOM

GISS-Model-E-H
GISS-Model-E-R

IAP-FGOALS1-0-G
IAP-FGOALS1-0-G
IAP-FGOALS1-0-G

INMCM3-0
IPSL-CM4

MIROC3-2-HiRes
MIUB-ECHO-G
MPI-ECHAM5
MRI-CGCM2-3
NCAR-CCSM3
NCAR-PCM1

UKMO-HadCM3

Table 2. CMIP-3 General circulation models used partly on the 4th IPCC Assessment
report. The order on the table is the same as the numbering in previous �gures.
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4 Spectra from the individual GCM control simulations (gray), and the spectra690

of the residuals of the linear �t to Tobs: Tobs� �̂T , when the internal variability691

is modeled as an AR(1) (thick grey line) and an FD (black line) process. We692

use a logarithmic scale in the horizontal axis (period) and the vertical axis693

(spectral density). 37694

5 AR(1) results of estimatinga1 (upper panel) anda2
0 (lower panel) as a function695

of the length of the control segment sampled from the 1000 years long HadCM3696

control run. 38697

6 FD results of estimating� (upper panel) and�e (lower panel) as a function of698

the length of the control segment sampled from the 1000 years long HadCM3699

control run. 39700

7 Upper panel: correlation between the memory parameter of both stochastic701

models, � values (vertical axis) versusa1 values (horizontal axis) obtained702

from the CMIP3 control segments considered in our analysis. Lower panel:703

same for the white noise parameter of both stochastic models,�e (vertical704

axis) versusa2
0 (horizontal axis). Each color corresponds to a di�erent GCM. 40705
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Fig. 1. The 95% con�dence intervals of the scaling factors�i derived from the multiregression
of observed temperature changes onto the BDM estimates of the forced responses. The
internal variability is represented by an AR(1) model (grey line) or an FD model (black line)
for the period 1850� 2005
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Fig. 3. The 95% con�dence intervals of the scaling factors�i derived from the multiregression
of observed temperature changes onto the BDM estimates of the forced responses to the three
signals VOL, SOL and ANT (top panels) and VOL, SOL, GHG and SUL (bottom panels).
The internal variability is represented by an AR(1) model (grey line) or an FD model (black
line) for the period 1850� 2005 (left hand side) and the period 1850� 2012 (right hand
side), using HadCRUT4
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Fig. 4. Spectra from the individual GCM control simulations (gray), and the spectra of the
residuals of the linear �t to Tobs: Tobs � �̂T , when the internal variability is modeled as an
AR(1) (thick grey line) and an FD (black line) process. We use a logarithmic scale in the
horizontal axis (period) and the vertical axis (spectral density).
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Fig. 5. AR(1) results of estimatinga1 (upper panel) anda2
0 (lower panel) as a function of

the length of the control segment sampled from the 1000 years long HadCM3 control run.
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Fig. 6. FD results of estimating� (upper panel) and�e (lower panel) as a function of the
length of the control segment sampled from the 1000 years long HadCM3 control run.
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Fig. 7. Upper panel: correlation between the memory parameter of both stochastic models,
� values (vertical axis) versusa1 values (horizontal axis) obtained from the CMIP3 control
segments considered in our analysis. Lower panel: same for the white noise parameter of
both stochastic models,�e (vertical axis) versusa2

0 (horizontal axis). Each color corresponds
to a di�erent GCM.
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