Thorpex Montreal 2004

How can we best combine forecasts for added value?

J. Broecker¹, L. Clarke¹, D. Kilminster² and L.A. Smith^{1,2}

Department of Statistics, London School of Economics, UK
 Pembroke College, Oxford, UK

Thorpex Montreal 2004

How can we best combine forecasts for added value?

How might we use TIGGE?

J. Broecker¹, L. Clarke¹, D. Kilminster² and L.A. Smith^{1,2}

Department of Statistics, London School of Economics, UK
 Pembroke College, Oxford, UK

B 4		•				
1\/	01	٦N	/a	t١	O	n
	\mathbf{U}		U	•	$\mathbf{\mathbf{\mathcal{I}}}$	

Forecast improvement can be achieved in two ways:

Overview

Combining

Evaluation

Forecast improvement can be	achieved in tw	NO
-----------------------------	----------------	----

Motivation

Overview

Combining

Evaluation

Motivation

Overview

Combining

Evaluation

Example

Forecast improvement can be achieved in two ways:

- improving the models (strategic)
- using the available information more effectively (tactical)

Motivation

Overview

Combining

Evaluation

Example

Forecast improvement can be achieved in two ways:

- improving the models (strategic)
- using the available information more effectively (tactical)

THORPEX:

"THORPEX will develop, demonstrate and evaluate a multi-model, multi-analysis and multi-national ensemble prediction system, referred to as TIGGE."

Overview

Motivation

Overview

Combining

Evaluation

Example

Combining Simulations

- Evaluation
 - skill scores → Broecker
 - bootstrapping and meaningful skill comparison
- Example combining ECMWF and NCEP

Inputs

Motivation

Overview

Combining

Evaluation

Inputs

Motivation

Climatological Distribution

Dressed Point Forecast

Overview

Combining

Evaluation

Inputs

Motivation

Overview

Combining

Evaluation

imatological Distribution	Dressed Point Forecast	Ensemble Product

Combining: Skill Scores

Motivation

The combination is based on the skill of the final forecast

Overview

Combining

Evaluation

Example

 $s = \mathcal{S}(f, o)$

f forecast distribution

o verth7ed4042 0 Td (er)Tj 0.9031vj 1.79917.89T82

Combining

Motivation

One combination method is to take a weighted sum of the component distributions

Overview

 $f = \sum \alpha_i f_i$

Combining

Choose α_i that maximise (sum)Tj m

Evaluation

The Right Comparison

Motivation

We do not want to compare the uncertainty in the average performance of two models.

Overview

Combining

Evaluation

Example

We want the uncertainty in the comparative performance of the models to each other.

Bootstrap the difference:

 $\langle s_A - s_B \rangle_{BS}$

Not the difference of the bootstraps: $\langle s_A \rangle_{BS} - \langle s_B \rangle_{BS}$

Comparative Skill

Motivation

Overview

Combining

Evaluation

	Predicting temperature at Heathrow.
Motivation	
	Using
Overview	 NCEP high resolution
	 NCEP ensemble
Combining	 ECMWF high resolution
	 ECMWF ensemble
Evaluation	
	Evaluating using Ignorance - out of sample
Example	

Motivation

Overview

Combining

Evaluation

Motivation

Overview

Combining

Evaluation

Motivation

Overview

Combining

Evaluation

Motivation

Overview

Combining

Evaluation

Motivation

Overview

Combining

Evaluation

Motivation

Overview

Combining

Evaluation

Motivation

Overview

Combining

Evaluation

Motivation

Overview

Combining

Evaluation

Summary

Motivation

Overview

Combining

Evaluation

Example

We have:

- presented a user-orientated methodology for combining simulations
- whatever combination method, the evaluation must be robust
- dressing method, combination method and size of forecast-verification archive affects performance
- potential relevance to TIGGE, provides a framework for allowing users to extract the forecast information most relevant to them