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Abstract

This paper studies the matching of workers within the …rm when
the productivity of workers depends on how well they match with their
co-workers. The …rm acts as a coordinating device and derives value
from this role. It is shown that a worker’s contribution to …rm value
changes over time in a non-trivial way as co-workers are replaced by
new workers.

The paper derives optimal hiring and replacement policies, includ-
ing an optimal stopping rule, and characterizes the resulting equilib-
rium in terms of worker ‡ows, …rm output and the distribution of
…rm values. Simulations of the model reveal a rich pattern of worker
turnover dynamics and their connections to the resulting …rm values
distribution.

The paper stresses the role of horizontal di¤erences in worker pro-
ductivity, which are di¤erent from vertical, assortative matching issues.



Non-Technical Summary

How does the value of the …rm depend on the value of its workers?
When one considers …rms that have little physical capital –such as IT …rms,
software development …rms, investment banks and the like –the neoclassical
model does not seem to provide a reasonable answer. The …rm has some
value that is not manifest in physical capital. Rather, ‘organization capital’
may be a more relevant concept in this context. One aspect of the latter
form of capital is the formation of teams and this is the issue taken up
in the current paper. We ask how workers a¤ect each other in production
and how this interaction a¤ects …rm value. The current paper thus o¤ers an
exploration of “organizational rent.”The paper studies the value of …rms and
their hiring and …ring decisions in an environment where the productivity of
the workers depends on how well they match with their co-workers and the
…rm acts as a coordinating device. This role of the …rm is what generates
value.

The paper derives optimal hiring and worker replacement policies and
characterizes the resulting equilibrium in terms of employment and the dis-
tribution of …rm values. A key result is the derivation of an optimal worker
replacement strategy, based on a productivity threshold that is de…ned rel-
ative to the other workers. The derivation is non-trivial and underlines the
importance of worker complementarities in productivity. Thus the model
is not equivalent to one with shocks to individual workers or to job-worker
pairings.

This replacement strategy (interacted with other worker separation and
with …rm exit) generates rich turnover dynamics. The resulting …rm values
distribution are found to be –using illustrative simulations –non-normal,
with negative skewness and negative excess kurtosis. This shape re‡ects the
fact that, as …rms mature, there is a process of forming good teams on the
one hand and the e¤ects of negative separation and exit shocks on the other
hand.
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This replacement strategy, interacted with exogenous worker separation
and …rm exit shocks, generates rich turnover dynamics. The resulting …rm
values distribution are found to be – using illustrative simulations – non-
normal, with negative skewness and negative excess kurtosis. This shape



characteristics are random at the stage at which the …rm decides on whom
to hire.

A common way to model worker heterogeneity, and which we use in this
paper, is to attribute to each worker a location in a metric space, and apply
a distance measure to capture the di¤erences between the workers. In order
to ensure that workers with di¤erent locations to be equally attractive in
expected terms, we have to put restrictions on the space in which workers
are located. A common way to obtain this is to assume that a worker has
a location on a Salop (1979) circle and that workers are allocated uniformly
on the circle.2 In this case, the distribution of the distance from a worker
to a co-worker randomly placed on the circle is independent of the worker’s
location. Note that this is not the case if the workers are uniformly allo-
cated on a line segment, in which case a worker at the middle of the segment
on average has a shorter distance to a randomly allocated co-worker than a
worker close to the end point. More generally, in ann dimensional Euclidean
space, ann � 1 dimensional sphere will also have the property that the dis-
tribution of the distance to a randomly placed co-worker will be independent
of a worker’s location on the sphere. However, in this case the distribution
of the distance to a randomly placed co-worker is no longer uniform. In
the discussion section we argue that a higher-dimensional sphere may be a
convenient location space if there are more than three workers.

In what follows we therefore attribute to all workers a position on a Sa-
lop circle, with their placement randomly and independently drawn from a
uniform distribution. Any new worker placement will be drawn indepen-
dently from the same distribution. Note that if two workers are close on the
circle, a third worker will either be close to or far away from both of the
workers. Hence the distances from the third, new worker, to each of the ex-
isting workers are workers are positively correlated. This seems reasonable.
The productivity of a team of workers is assumed to depend negatively on
the distance between the workers.

Let � = 1



2.2 Workers’Productivity and Interactions

We now turn to a formal description. The three workers are located on the
unit circle. The one in the middle (out of the three) is the j worker who
satis…es

min
j

3X
i=1

dij (1)

where dij is the distance between workeri and j, and dii = 0. We shall
de…ne two state variables�1; �2 as follows:

�1 = min
i;j

dij (2)

�2 = min
j

dkj ; k 6= i� ; j � i� ; j � = arg min
i;j

dij (3)

The …rst state variable�1 expresses the distance between the two closest
workers. The second state variable�2 expresses the distance between the
third worker and the closest of the two others.

The following …gure illustrates:

Figure 1: The State Variables

Every period, each worker works together with both co-workers to pro-
duce output. Output depends negatively on the distance between the work-
ers. When measuring the distance between two peripheral workers, we as-
sume that it is measured on the segment that goes through the middle man,
not the other way around the circle (even if that is shorter). Partly this is
meant to capture the structure of a team, that it needs a common ground.
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Partly it is done for convenience, as it simpli…es the algebraic expressions
somewhat. It is not important for the results 3.

The …rm’s total output is written as a linear additive function:

Y = ey � 2(�1 + �2)

We assume that wages are independent of match quality. This is consis-
tent with a competitive market where …rms bid forex ante identical workers
prior to knowing the match quality. The pro…ts (�) of the …rm are then given



Figure 2: Incumbent Workers

From Figure 2 it follows that � can be characterized as follows:

1. With probability 1 � 3�1, �0
1 = �1 and �0

2 � unif [�1; 1� �1
2 ]

2. With probability 2�1, �0
1 � unif [0; �1] and �0

2 = �1

3. With probability �1, �0
1 � unif [0; �1=2] and �0

2 = �1 � �0
1

Note that the transition probabilities, and hence continuation values
when replacing, are a function of �1 and thus are independent of�2. Hence
only �2 in‡uences continuation values in states where the …rm is not re-
placing. That is, as follows from the de…nition of pro…ts (equation 4), the
continuation value of inaction is a function of (�1 + �2).

2.3 Microeconomic Stylized Facts

The afore-going set-up aims at capturing properties that have been found
in empirical micro-studies of team production and complementarities within
…rms. To note just a few examples: Hamilton, Nickerson and Owan (2003)
…nd that teamwork bene…ts from collaborative skills involving communica-
tion, leadership, and ‡exibility to rotate through multiple jobs. Team pro-
duction may expand production possibilities by utilizing collaborative skills.
Turnover declined after the introduction of teams. Bresnahan, Brynjolfsson
and Hitt (2002) study U.S. evidence and stress the importance of comple-
mentarities between workplace organization (and organizational changes)
and computerization. Garicano and Wu (2012) discuss how performing com-
plementary tasks leads to the formation of an homogenous team.
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A recent study, undertaken by MIT’s Human Dynamics Laboratory, col-
lected data from electronic badges on individual communications behavior
in teams from diverse industries. The study, reported in Pentland (2012),
stresses the huge importance of communications between members for team
productivity. In describing the results of how team members contribute to a
team as a whole, the report actually uses a diagram of a circle (see Pentland
(2012, page 64)), with the workers placed near each other contributing the
most. The …ndings state that face to face interactions are the most valu-
able form of communications, much more than email and texting, thereby
emphasizing the role of physical distance.

2.4 A Detour: One-Dimensional Optimal Stopping

Before we continue, we will brie‡y examine our model with only two workers.
Our model then collapses to an optimal stopping model as in McCall (1970).
It can also be viewed as a simpli…ed version of the Jovanovic (1979 a,b)
model, where the entrepreneur learns the worker type after one period.4

The owner of a …rm needs two workers to produce. Analogous with the



Inserting for V (") and manipulating gives that �" solves5

"2

r
� (

1

4
� ") � c = 0 (6)

The …rst term re‡ects the expected gain from replacing in terms of lower
distances in all periods if the draw is good. The second term re‡ects the



Note that the existence of a stopping rule of this form is not obvious. For
example, suppose we formulate the stopping rule in terms of total distance
X = 2(�1 + �2) rather than in terms of �1 and �2, that is, stop if X � �X
for some �X > 0. Such a stopping rule cannot be optimal. To see this,
note that (i) for a given X, the pay-o¤ if stopping is independent of the
decomposition of X into �1 and �2, and (ii) the pay-o¤ if replacing for a
given X is decreasing in�1 (see below). Hence it cannot be optimal to apply
a stopping rule under which stopping depends only on total distance.

By the logic of equation (5), note that in the stopping region, we have
that

V (�1 + �2) = (y � 2(�1 + �2))
1 + r

r
(7)

Outside the stopping region, the continuation value depends only on�1.
De…neV (�1) � EV (�0

1; �0
2)j�1 as the expected continuation value if the …rm

chooses to replace. The value function in the case of replacement can then
be written as:

V (�1; �2) = y � 2(�1 + �2) + � �V (�1) (8)

We start by showing an important property of the value function.

Lemma 1 V (�1 + �) > �V (�1) � 2�1+r
r

Proof. Consider replacement in two cases in which the distances between
the remaining workers are�1 and �1 + �, respectively. We refer to the two
cases as the�1-case and the�1 +�-case, respectively. The expected pay-o¤s
only depend on the distances between the agents, and not on their exact
location on the circle. Without loss of generality, we can therefore assume
that in both cases, the two workers are located symmetrically around the
north pole, and that the draw of the new worker is the same in the two
cases. In what follows we assume that the …rm in the�1 + � case follows
exactly the same replacement strategy as the …rm in the�1 case (replaces the
worker on the left hemisphere whenever the optimal strategy in the�1 case
prescribes so, the same for the worker on the right hemisphere, and stops
searching after the same draws of location). We refer to it as the replication
strategy. This is clearly in the choice set of the …rm. Hence if we can show
that the replication strategy gives the …rm in the �1 + � case a pro…t that
is strictly greater than �V (�1) � 2�1+r

r , the proof is complete.
Let �n

1 and �n
1� denote the state variable in the two cases aftern periods,

and let �n � �n
1 � �n

1�. De…ne�n
2 and �n

2� correspondingly. Consider …rst
the case with n = 1. Let ��tot be de…ned as��tot � �1

1� + �1
2� � �1

1 � �1
2.
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It follows that the di¤erence in output the …rst period after replacement is
equal to 2��tot. There are three possibilities:

(i) The new worker is located below the workers in the�1 + �



The lemma captures the essence of replacement: it makes a bad draw
less costly than without replacement, since the …rm can always make a new
draw. For any �1, �2, let D(�1; �2) denote the value of replacing less the
value of stopping, i.e., from equation (7) and (8),

D(�1; �2) � y � 2(�1 + �2) + � �V (�1) � (y � 2(�1 + �2))
1 + r

r

= �



The …nding that ��2(�1) is strictly decreasing in �1 deserves a comment.
At �1 = ��

1, ��2(�� ) = ��
1. As �1 decreases below��

1, ��2(�1) increases above��
1.

This rules out the possibility of a non-monotonicity in stopping behaviour,
in the sense that a good draw that reduces�1 makes the …rm more choosy
and induces it to replace more. Appendix A shows the full derivation of�� :

As will become clear below, a …rm will replace for large values of�1

provided that r and c are not too big.

3.2 Characterizing the Stopping Rule

In this section we will characterize �2(�1). Now

V (�1; �2) = �(�1; �2) + � max[V (�1; �2); V (�1) � c] (10)

= y � 2(�1 + �2) + max[
y � 2(�1 + �2)

r
;
V (�1) � c

1 + r
]

It follows directly from proposition 4 in Stokey and Lucas (1989, p.522)
that the value function exists. By de…nition the optimal stopping rule must
satisfy

V (�1; �2(�1)) = V (�1) � c

Or (from equation ( 10))

y � 2(�1 + �2(�1))

r
=

V (�1) � c

1 + r
(11)

Let E jx denote the expectation conditional onx. Intuitively, the expected
value of replacement,V (�1) , is given by:

14





� With probability � 1 the new worker will fall between the two incum-
bents, and the total sum of distances between all workers will be2� 1

Summing up, the total expected sum of distances between all workers
after replacement is:

2 � E j � 1
�
� 0

1 + � 0
2

�
= 2 �

�
1



3. Finally we show that

Pr(�0
2 > �2(�1))

V (�1) � c

1 + r
= (1 � �1 � 2�2)

V (�1) � c

1 + r

This comes from the fact that with probability (1��1 �2�2) the new worker
is above the�2 threshold. The …rm will keep replacing and pay the costc
again.
We have thus fully derived equation (13).

Let us write:

(�1 + 2�2)y � 2�2(2�1 + �2) � 2�2
1

= (�1 + 2�2)(y � 2(�1 + �2)) + 2�
2
2 + 2�1�2

Hence we can re-write (13) as follows:

V (�1) = y � (
1

2
+ �1 +

�2
1

2



which is the LHS of (15).
The RHS of (15) represents the gains from replacement associated with

lower costs in all future periods if the draw is good.
With probability �1 the new worker will be between the two existing

workers who have a distance of�1 between them. The total distance between
the three workers is2�1: Existing total distance is 2(�1 +�2), and the savings
in distance is thus2�2. Multiplying this with the probability of the event ; �1,
gives the …rst term in the nominator of the RHS of (15).

With probability 2�2 the worker is not between the existing workers but
within a distance of �2 from one of them. The expected distance of the
new worker to the nearest existing worker is�2=2 and to the other existing
worker it is �1 + �2=2. The etorko5-51c5-51uic5-51uic5-5-2810.218 m

� +1



Figure 4: Optimal Policy

The space of the …gure is that of the two state variables,�1 and �2: The
feasible region is above the45 degree as�2 � �1 by de…nition. The downward
sloping line shows the optimal replacement threshold�2 as a function of �1:

With the replacement of a worker, the …rm may move up and down a
vertical line for any given value of �1 (such as movement between A, B and
C or between D, E and F). If the replacement implies a lower value of�1,
this vertical line moves to the left. This is what happens till the …rm gets
into the absorbing state of no further replacement in the shaded triangle
formed by the ��

1 = �2(��
1) point, the intersection of �2(�1) line with the

vertical axis, and the origin (�1 = �2 = 0).
The following properties of turnover dynamics emerge from this …gure

and analysis:
(i) At the NE part of the �1 � �2 space,�1; �2 are relatively high, output

is low, and the …rm value is low. Hence the …rm keeps replacing and there is
high turnover. Note that some workers may stay for more than one period in
the …rm when in this region. The dynamics are leftwards, with�1 declining,
but �2 may move up and down.

(ii) Above the �2(�1) threshold, left of ��
1, newcomers may still be re-

placed, but veteran workers are kept.
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(iii) In the stopping region there is concentration at a location which is
random, with a ‡avor of New Economic Geography agglomeration models.
Thus …rms specialize in the sense of having similar workers. There is no
turnover, and output and …rm values are high.

(iv) Policy may a¤ect the regions in �1 � �2 space via its e¤ect onc: The
discount rate a¤ects the regions as well.

(v) These replacement dynamics imply that the degree of complemen-
tarity between existing workers may change. This feature is unlike the con-
tributions to the match of the agents in the assortative matching literature,
where they are of …xed types.

3.4 Closing the Model

Our main purpose in this paper is to study replacement, and this can be
done in partial equilibrium. Still, for completeness we demonstrate how the
model can be closed by endogenizing the wagew and pin it down by a free
entry condition. There are costs K � 3c to open a …rm. A zero pro…t
condition pins down the wage (w = W

3 ):

E j�1�2V (�1; �2; w; ey; c) = K (16)

As we have seen, the hiring rule is independent ofw (since it is independent of
y). If y is su¢ ciently large relative toK, we know that E j�1�2V (�1; �2; w; ey; c) >
K, and there exists a wagew� that satis…es (16). A formal proof of existence,
as well as su¢ cient conditions on the parameters that ensure existence and
production in each period, is given in Appendix C.

4 Exogenous Replacement

We now allow, with probability �, for one worker to be thrown out of the
relationship at the end of every period. If the worker is thrown out, the …rm
is forced to search in the next period.6 Thus, if the replacement shock hits,
one of the workers, chosen at random, has to be replaced. The …rm can
only hire one worker in any period, and hence will not voluntarily replace a
second worker if hit by a replacement shock. If the shock does not hit, the
…rm may choose to replace one of its workers or not.

6With minor adjustments of the model, replacement can be interpreted as a change of
position on the circle of one worker, due to learning to work better with other workers or,
the opposite, the “souring”of relations.
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Suppose one worker is replaced by the …rm as above. The transition
probability for (�1; �2) was denoted by�(�1), and depends only on�1. We
refer to this as the basic transition probability.

The forced transition probabilities are the transition probabilities which
occur when one worker is forced to leave, to be denoted by�F (�1; �2). Which
of the three incumbent workers leaves is random: with probability 1=3 the
least well located worker leaves, in which case the transition probability is
�(�1); with probability 1=3, the second best located worker leaves, in which
case the transition probability is �(�2); with probability 1=3, the best located
worker leaves, in which case the distance between the two remaining workers
is min[�1 + �2; 1 � �1 � �2]. It follows that the forced transition probabilities
can be written as

�F (�1; �2) =
1

3
�(�1) +

1

3
�(�2) +

1

3
�(min[�1 + �2; 1 � �1 � �2]) (17)

With exogenous replacement, the probability distributions for �0
1 and �0

2

depend on both �1 and �2, not just �1 as above. The Bellman equation
reads:

V (�1; �2) = �(�1; �2) + �[�E�F
V1(�0

1; �0
2) � c] (18)

+(1 � �)� max[V (�1; �2); �V (�1) � c]

The …rst term in the bracket shows the expected NPV of the …rm if the
…rm is hit by a replacement shock. The second term in the bracket shows
the expected NPV if the …rm is not hit by a replacement shock. It follows
directly from Proposition 4 in Stokey and Lucas (1989, p. 522) that the
value function exists. Furthermore, due to continuity, we know that the
optimal replacement strategy can be characterized by an optimal stopping
rule provided that � is small.

5 The Model in the Context of the Literature

The paper bears (limited) similarity to Kremer’s (1993) O-ring production
function model. The similarity pertains to the importance attributed to the
idea of workers working well together. In that model …rms employ workers
of the same skill and pay them the same wage. In this set-up quantity
cannot substitute for quality. But the models di¤er in their treatment of the
matching of workers: in Kremer (1993) there is a multiplicative production
function in workers/tasks and this underlies their complementarity. In the
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current paper there is explicit modelling of the match between workers,
formalized as random state variables, which realization elicits the …rm’s
optimal worker replacement policy.

The paper stresses the role of horizontal di¤erences in worker produc-
tivity, as opposed to vertical, assortative matching issues. The literature on
the latter –see the prominent contributions by Eeckhout and Kircher (2010,
2011), Shimer and Smith (2000), and Teulings and Gautier (2004)), and the
overview by Chade, Eeckhout, and Smith (2016) –deals with the matching
of workers of di¤erent types. Key importance is given to the vertical or hier-
archical ranking of types. These models are de…ned by assumptions on the
information available to agents about types, the transfer of utility among
workers (or other mating agents), and the particular speci…cation of com-
plementarity in production (such as supermodularity of the joint production
function). In the current paper, workers are ex-ante homogenous, there is
no prior knowledge about their complementarity with other workers before
joining the …rm, and there are no direct transfers between them. In simi-
lar vein, the models of Garicano and Rossi-Hansberg (2006) and Caliendo
and Rossi-Hansberg (2012), whereby agents organize production by match-
ing with others in knowledge hierarchies, stresses the vertical dimension of
worker communication. In terms of those models, the current paper is rel-
evant for the modelling of team formation at a particular hierarchical level.
Thus these approaches are complementary to ours.

The paper has points of contact with papers in the search literature.
We exploit the idea of optimal stopping, as in McCall (1970) and the rich
strand of search literature which followed (see McCall and McCall (2008), in
particular chapters 3 and 4, for a comprehensive treatment). The existing
literature does not cater, however, for the key issue examined here, namely
that of worker complementarities. Conceptually this is an important distinc-
tion, and it allows us to analyze team formation in detail. Technically it also
gives rise to new challenges. Total match quality (or output) depends on
two variables that are stochastic ex ante, the distances from the best placed
worker to each of her two co-workers. At the same time the …rm replaces
only one worker at a time. This creates a new dimension to the optimal
stopping problem, which, in contrast to most earlier studies, now depends
on a state variable (the distance between the two closest workers who are
not replaced in a given round). Furthermore, optimal stopping behaviour
depends on this state variable in a non-trivial way, and it is not even obvious
from the outset that a simple optimal stopping rule exists.

Our paper shares some features with the search model of Jovanovic (1979
a,b): there is heterogeneity in match productivity and imperfect informa-
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tion ex-ante (before match creation) about it; these features lead to worker
turnover, with good matches lasting longer.7But it has some important dif-
ferences: the Jovanovic model stresses the structural dependence of the sep-
aration probability on job tenure and market experience. There is growth
of …rm-speci…c capital and of the worker’s wage over the life cycle. In the
current model the workers do not search themselves and …rms do not of-
fer di¤erential rewards to their workers. But the Jovanovic model does not
cater for the key issue here, namely that of worker complementarities.



worker locations. The main reason why we use the Salop circle is that it
conveniently allow the distances from a given worker to a randomly placed
co-worker to be independent of the worker’s location. Hence, this modelling
technique readily implies that the workers’location, ex ante, does not in‡u-
ence his expected contribution to a team. As already indicated in the text,
this property does not carry over to a location on a line segment. A worker
located close to the middle of the line will on average be closer to randomly
allocated co-workers than a worker located close to the an end point. In ad-
dition, the Salop circle easily captures the notion that if A works well with
B and B with C, then A and C are also likely to work well together. There
may exist other stochastic structures that capture the same type of regu-
larities, but the Salop structure does so in a particularly nice and tractable
way. Note that we could alternatively let output depend positively on the
di¤erence between the workers, in order to capture a love of variety. To
some extent this may be a matter of interpretation of what a good match
is.

As indicated in the text, another representation which qualitatively cap-
tures the same properties aren � 1 dimensional spheres inn-dimensional
Euclidean space. With this model formulation, the distribution of distances
of a new worker will be non-linear. More importantly, it may be convenient
to choose a higher-dimensional location space if the number of workers in
the team exceeds 3. In a two-dimensional space, it is not clear which of four
workers are more peripheral. On a two-dimensional sphere, there are ways
to deal with this, for example by de…ning closeness as the area of a circle on
the sphere that contain all three locations. However, it is beyond the scope
of this paper to explore these issues further.

We assume that wages are independent of match quality. As mentioned
above, this is consistent with a competitive market where …rms bid for ex
ante identical workers prior to knowing the match quality. An alternative
formulation would be to allow for bargaining, in which case part of the sur-
plus from a good match would be allocated to the worker. This will give rise
to a hold-up problem, if the …rm pays the entire cost of replacing the worker
and only gets a fraction less than one of the return in terms of a better
match. The e¤ect will be equivalent to reducing the circumference with a
fraction equal to the workers’bargaining power, and can hence be easily cap-
tured within our framework. The e¤ect will, naturally, be less replacement.
In addition, if the …rm is unable to extract the rents going to workers ex
ante through a lower …xed wage, this rent will have to be dissipated in some
other way, for instance through unemployment as in Shapiro and Stiglitz
(1984) and Moen and Rosen (2006). Hence our model in this case may link
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worker replacement to the unemployment level. Furthermore, in the present
version of the model, workers have no incentives to do on-the-job search, as
wages are the same across …rms. With wage bargaining, workers may have
an incentive to search for a new job, and bargaining may therefore lead to
on-the-job search.

Throughout we have assumed that the e¢ ciency of a given team stays
constant over time. Although a natural assumption as a starting point,
one may think that the quality of a team may develop over time. As the
workers get to know each other better, their ability to communicate and
collaborate may improve. On the other hand, good relationships may sour
over time. Introducing dynamics of team quality may lead to interesting
hiring patterns. For instance, a …rm that has been passive for a while may
start a replacement frenzy if the relationship suddenly sours. This is on our
agenda for future research.

7 Illustrative Simulations: Exploring the Mecha-
nisms

We undertake simulations in order to explore the mechanisms inherent in the
model. This gives a sense of the model’s implications for worker turnover,
…rm age, …rm value and the connections between them, revealing rich pat-
terns. In particular, we examine the properties of the resulting …rm value
distributions and relate them to replacement policy. The dynamic evolution
of these variables is due to both the random draw of workers and the …rm’s
optimal replacement policy. The interaction of worker draws, exogenous
shocks and …rm policy is not trivial and generates non-normal …rm value
distributions. We explain the properties of these distributions, as expressed
by their …rst four moments, in terms of the mechanisms of the model.

When simulating we look at the full model, with both endogenous and
exogenous replacement and allowing for exogenous …rm exit. As in the
previous section, the value function is given by (18). Let� denote the pure
time preference factor, where� = �(1 � s). This value function can be
found by a …xed point algorithm. Appendix D provides full details. When
simulating …rms over time, we use the value function formulated above. We
simulate 1000 …rms over 30 periods, and repeat it 100 times to eliminate
run-speci…c e¤ects. In the benchmark case, we set:y = 1; c = 0:01; r = 0:04
(the pure discount rate), � = 0:1; s = 0:1:
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7.1 The Distribution of Firm Values
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Figure 6a: Cross-sectional log …rm values, by age

and the entry of new …rms, age 1 will be observed not only for all …rms in the …rst period,
but also in all cases when a …rm exogenously left and was replaced by a new entrant. In
this manner we gathered observations of values for all ages, from 1 to 30, and built the
corresponding distributions.
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Figure 6b: Moments of cross-sectional log …rms value, by age

The patterns re‡ect the pure process of convergence, disrupted from time
to time by workers’exogenous exits, without the entry of new-born …rms.
The value of the …rm grows with age as a result of team quality improve-
ments, while the standard deviation is rather stable. As …rms mature, more
of them enter the absorbing state, with relatively high values, and at the
same time there are always unlucky …rms that do not manage to improve
their teams su¢ ciently, or which have been hit by a forced separation shock.
Therefore the distribution becomes more and more skewed over time. Excess
kurtosis ‡uctuates.

These turnover dynamics of the model are very much in line with the
…ndings in Haltiwanger, Jarmin and Miranda (2013), whereby, for U.S. …rms,
both job creation and job destruction are high for young …rms and decline
as …rms mature.

We run a regression of the simulation data to further study the connec-
tion between …rm value and …rm age. Here we look only at a simulated
subsample of …rms which have survived until the 30th period. There have
been 45 such …rms in our simulation. The estimated equation is:

28



ln(V )t = c0 + c1 � ln(t) (19)

where ln(V )t is the average logged value of …rms at aget, t = 1; 2; :::; 30:
The results are presented in Table 1:

Table 1

The Relation Between Firm Value and Age
Regression Results of Simulated Values

c1 0.05
(0.01)

c0 1.37
(0.02)

R2 0.62

The coe¢ cients are highly signi…cant and imply a positive relation, il-
lustrated below:

0 10 20 30

1.38
1.40
1.42
1.44

Figure 7: Predicted …rm value (logs) and …rm age

Figure 7 shows that overall, despite exogenous separation shocks, …rms
tend to increase in value as they mature, due to the improvement of their
teams’quality. This is in line with the …ndings of Haltiwanger, Lane and
Spletzer (1999) whereby productivity rises with age for U.S. …rms in Census
Bureau data, covering the period 1985-1996.

7.3 The Role of Model Parameters

The core parameters of the model at the benchmark are the worker replace-
ment cost, c = 0:01; the annual rate of interest, r = 0:04; the exogenous
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As …rms tend to stay with their current, randomly-drawn, teams, …rm
values become more dispersed. Along the same lines, extreme values become
relatively more frequent and excess kurtosis goes up. As inaction becomes
optimal for so many …rms, …rms values become more concentrated above
the mean. At the same time, in any period there are always unlucky …rms,
which have just obtained a very bad team as a result of the� or s shock.
Hence skewness becomes more negative. The sensitivity to the interest rate
is higher than to changes in replacement costs. Thus, under higherc or
higher r the distribution has a longer left tail, lower mean, and fatter and
longer tails relative to the benchmark.

(ii) Increases in the exogenous worker separation rate� are illustrated
in Figure 8b (and reported in rows 7-9 of Appendix Table E1).
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Figure 8b: e¤ects of � and s

Increased separation depresses the mean value, slightly increases the co-
e¢ cient of variation, make the skewness less negative and kurtosis more
negative. The possibility of a worker’s exogenous exit is a burden on the
…rms, limiting their control over teams and the possibility to 6i6 sis more





8 Conclusions

The paper has characterized the …rm in its role as a coordinating device.
Thus, output depends on the interactions between workers, with comple-
mentarities playing a key role. The paper has derived optimal policy, us-
ing a threshold on a state variable and allowing for endogenous hiring and
…ring. Firm value emerges from optimal coordination done in this man-
ner and ‡uctuates as the quality of the interaction between the workers
changes. Simulations of the model generate non-normal …rm value distribu-
tions, with negative skewness and negative excess kurtosis. These moments
re‡ect worker turnover dynamics, whereby a large mass of …rms is inactive
in replacement, having attained good team formation, while exogenous re-
placement and …rm exit induce dispersion of …rms in the region of lower
value. Future work will examine alternative production functions, learning
and training processes, and wage-setting mechanisms within this set-up.
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9 Appendix A. Solution of the Cut-O¤ ��

In this Appendix we show how to derive �� : We repeat the cut-o¤ equation
for convenience

c +
1

2
+

�2
1

2
� �1 � 2�2 =

2�1�2 + 2�
2
2

r
(20)

If �2 = 0, the left-hand side of (20) is strictly positive while the right-
hand side is zero (since�1 � 1=3 by construction). As �2 ! 1, the left-hand
side goes to minus in…nity and the right-hand side to plus in…nity. Hence
we know that the equation has a solution. Since the left-hand side is strictly
decreasing and the right-hand side strictly increasing in�2, we know that



10 Appendix B. Derivation of Equation (15)

Substituting (11) into (14) gives

y � 2(�1 + �2(�1))

r
(1 + r) + c = y � (

1

2
+ �1 +

�2
1

2
) (23)

+
(�1 + 2�2)(y � 2(�1 + �2)) + 2�

2
2 + 2�1�2

r

+(1 � �1 � 2�2)
y � 2(�1 + �2(�1))

r

Collecting all terms containing y � 2(�1 + �2(�1)) on the left-hand side gives

y � 2(�1 + �2(�1))

r
[1 + r � (�1 + 2

2
+ �1 +

�2
1

2
) +

2�
2
2 + 2�1�2

r

which simpli…es to

�2(�1 + �2(�1)) + c = �(
1

2
+ �1 +

�2
1

2
) +

2�
2
2 + 2�1�2

r
(25)

Collecting terms gives

c +
1

2
+

�2
1

2
� �1 � 2�2(�1) =

2�
2
2 + 2�1�2

r
(26)

which is equation (15).
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11 Appendix C. Proof of Existence of Equilibrium

De…ne
V � E j�1�2V (�1; �2; 0; ey; c)

Given our assumption that the …rm always produces until it is destroyed, it
follows that

E j�1�2V (�1; �2; w; ey; c) = V � W

r0 (27)

where r0 = r=(1 + r) and where, as above,W = 3w. By assumption, V > 0
(see below). It follows that there exists a uniqueW that solves the zero-
pro…t condition given by

V � W

r0 = K (28)

The solution is given by W = r0(V � K):
We will give conditions on parameters that ensure thatV > 0;and that



12 Appendix D. The Simulation Methodology

The entire simulation is run in Matlab with 100 iterations. In order to
account for the variability of simulation output from iteration to iteration,



or min(( �1 + �2); 1 � ( �1 + �2)), with equal probabilities. In the general
case, if there are two workers at a distance�, and the third worker is drawn
randomly, possible pairs in the following period may be of the following
three types: (i) � turns out to be the smaller distance (the third worker falls
relatively far outside the arch), (ii) � turns out to be the bigger distance
(the third worker falls outside the arch, but relatively close) (iii) the third
worker falls inside the arch, in which case the sum of the distances in the
next period is �. In the simulation we go over all possible pairs to identify
the pairs that conform with (i)-(iii). Note that because all the distances are
proportionate to 1/BINS_NUMBER, it is easy to identify the pairs of the
type (iii) described above. This can be done for any�, whether it is �1; �2

or min(( �1 + �2); 1 � ( �1 + �2))
4. Having the guessV , and given that all possible pairs are equally prob-

able, we are then able to calculate the expected values of the …rm when cur-
rently there are two workers at a distance�. Call this value EV (�). Then, if
there is a …rm with three workers with distances(�1:�2), the expected value
of voluntary replacement is EV (�1), and expected value of forced replace-
ment is 1=3�EV (�1)+1=3�EV (�2)+1=3�EV (min((�1 + �2); 1 � (�1 + �2))) :
Thus wther



5. According to
�e�1;e�2

�
, using the calculations from previous section, we

assign to each …rm the value and the optimal decision in the current
period.

6. It is determined whether an exit shock hits. If it does, instead of the
current distances of the …rm, a new triple is drawn in the next period.
If it does not, it is determined whether a forced separation shock�
hits. If � hits, a corresponding worker is replaced by a new draw and
distances are recalculated in the next period. If it does not, and it
is optimal not to replace, the distances are preserved for the …rm in
the next period, as well as the value. If it is optimal to replace, the
worst worker is replaced by a new one, distances are re-calculated in
the next period, together with the value.

Steps 4-6 are repeated for each …rm over all periods.
As a result, we have aT by N matrix of …rm values. The whole process

is iterated 100 times to eliminate run-speci…c e¤ects. We also record the
events history, in a T by N matrix which assigns a value of0 if a particular
…rm was inactive in a particular period,1 if it replaced voluntarily, 2 if it was
forced to replace, and3 if it was hit by an exit shock and ceased to exist
from the next period on. We use this matrix to di¤erentiate …rms by states
and to calculate …rms’ages.
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13 Appendix E. Changes in Parameters

Table E1
The E¤ects of Changes in Parameters

Parameters Moments of ln(V) in period 30

c r � s mean coef. of var. skewness excess kurtosis

1 0:01 0:04 0:1 0:1 1:46 0:13 �0:47 �0:40

2 0:05 �10 � � 1:45 0:14 �0:55 �0:28
3 0:10 � � � 1:44 0:16 �0:68 0:06

4 � 0:01 � � 1:60 0:10 �0:39 �0:53
5 � 0:04 � � 1:46 0:13 �0:47 �0:40
6 � 0:10 � � 1:15 0:20 �0:72 0:02

7 � � 0 � 1:73 0:11 �0:67 �0:04
8 � � 0:05 � 1:58 0:12 �0:58 �0:27
9 � � 0:15 � 1:46 0:13 �0:41 �0:48

10 � � � 0 2:82 0:02 �0:21 �0:52
11 � � � 0:05 1:86 0:07 �0:41 �0:40
12 � � � 0:15 1:09 0:22 �0:53 �0:32

53 �0:32


